Introduction:
In this part of the blog we are going to talk about the gas law, specifically about the relation between temperature and pressure. In this project we had used a Schlenk tube to perform it and we were taking data with the computer in order to make a table and a graph.
The
relation between temperature and pressure is: When temperature increases
pressure increases too, and as the temperature decreases the pressure decreases.
Temp (k)
|
Pressure (Kpa)
|
301,281001
|
99,4891206
|
301,584721
|
99,5949713
|
301,913393
|
99,6972937
|
302,239442
|
99,8207863
|
302,567264
|
99,8984101
|
302,965494
|
99,9830907
|
303,342368
|
100,099527
|
303,653926
|
100,226547
|
303,965893
|
100,353568
|
304,2328
|
100,470004
|
304,507388
|
100,582912
|
304,897153
|
100,653479
|
305,348222
|
100,762858
|
305,69245
|
100,847539
|
305,936641
|
100,935748
|
306,191581
|
101,05924
|
306,363751
|
101,143921
|
306,680394
|
101,218016
|
306,978329
|
101,292112
|
307,226087
|
101,373264
|
307,576091
|
101,443831
|
307,856454
|
101,4897
|
308,108849
|
101,581437
|
308,292451
|
101,648476
|
308,492918
|
101,719043
|
308,816172
|
101,814309
|
309,146381
|
101,923688
|
309,512543
|
102,029539
|
309,766983
|
102,100106
|
309,898244
|
102,163616
|
309,985331
|
102,223598
|
310,165845
|
102,272995
|
310,506302
|
102,371789
|
310,749301
|
102,45647
|
311,076282
|
102,572906
|
311,419862
|
102,682285
|
311,69624
|
102,781079
|
311,959402
|
102,9081
|
312,170163
|
102,97161
|
312,536652
|
103,070404
|
312,759792
|
103,172727
|
312,9425
|
103,282106
|
313,383546
|
103,377371
|
313,742515
|
103,46558
|
313,968865
|
103,606715
|
314,324012
|
103,670225
|
314,598657
|
103,761963
|
314,92434
|
103,843115
|
315,218962
|
103,941909
|
315,475667
|
104,065401
|
315,751223
|
104,135969
|
316,058976
|
104,213592
|
316,359804
|
104,337085
|
316,604024
|
104,453521
|
317,011839
|
104,54173
|
317,261686
|
104,654637
|
317,562709
|
104,742846
|
317,844877
|
104,838112
|
318,206041
|
104,947491
|
318,516464
|
105,060398
|
318,737886
|
105,155664
|
318,960072
|
105,268572
|
319,265557
|
105,363837
|
319,565614
|
105,473216
|
319,818503
|
105,575539
|
320,168364
|
105,646106
|
320,43778
|
105,7449
|
320,718971
|
105,868392
|
320,921897
|
105,970715
|
321,130841
|
106,051867
|
321,248031
|
106,118906
|
321,451003
|
106,168303
|
321,663635
|
106,256512
|
321,956161
|
106,327079
|
322,253805
|
106,4541
|
322,489416
|
106,545837
|
322,707781
|
106,641103
|
323,08097
|
106,73284
|
323,432674
|
106,831634
|
323,678918
|
106,930428
|
323,916962
|
106,997467
|
324,291025
|
107,060978
|
324,577073
|
107,1633
|
324,900736
|
107,247981
|
325,140506
|
107,339718
|
325,392882
|
107,389115
|
325,766046
|
107,477324
|
325,967214
|
107,604345
|
326,161395
|
107,681969
|
326,352416
|
107,738422
|
326,614782
|
107,844273
|
326,969386
|
107,911312
|
327,298663
|
107,978351
|
327,624139
|
108,052446
|
327,861115
|
108,154769
|
328,032534
|
108,232393
|
328,224838
|
108,295903
|
328,536167
|
108,341772
|
328,798184
|
108,444094
|
329,041012
|
108,535831
|
329,26228
|
108,585228
|
329,520007
|
108,669909
|
329,703769
|
108,75459
|
329,907164
|
108,814572
|
330,115672
|
108,902781
|
330,310279
|
108,966291
|
330,497193
|
109,019217
|
330,77257
|
109,082727
|
331,062538
|
109,174464
|
331,376052
|
109,2909
|
331,549957
|
109,368524
|
331,853718
|
109,432034
|
332,093364
|
109,50613
|
332,296638
|
109,573169
|
332,554267
|
109,664906
|
332,750713
|
109,714303
|
332,957024
|
109,774285
|
333,229849
|
109,837796
|
333,392998
|
109,904834
|
333,666275
|
109,982458
|
333,932083
|
110,014214
|
Graph:
Gay Lussac Law:
graph:
Conclusion:
As we can see in the graph and in the table, as the
temperature increases the pressure also increases. These means that pressure
and temperature are directly proportional. These results mean that we have done
correctly the experiments because the answers relates to the ones in the Gay
Lussac Law. This law holds true because temperature is a measure of the
average kinetic energy of a substance; as the
kinetic energy of a gas increases, its particles collide with the container
walls more rapidly, thereby exerting increased pressure. The first law relates
to volumes before and after a chemical reaction while the second concerns the pressure
and temperature relationship for a sample of gas often known as Amontons' Law. Which says: The pressure of a gas of fixed mass and fixed volume is directly proportional to the gas' absolute temperature.
Bibliography:
Passmyexams.co.uk
Pressure and
temperature relationship of a gas – The Pressure Law - Pass My Exams: Easy exam
revision notes for GSCE Physics
In-text: (Passmyexams.co.uk,
2013)
Bibliography: Passmyexams.co.uk
(2013). Pressure and temperature relationship of a gas – The Pressure
Law - Pass My Exams: Easy exam revision notes for GSCE Physics. [online]
Retrieved from:
http://www.passmyexams.co.uk/GCSE/physics/pressure-temperature-relationship-of-gas-pressure-law.html
[Accessed: 30 Nov 2013].
Wikipedia.
Ley
de Gay-Lussac
No hay comentarios:
Publicar un comentario